Function spaces on the snowflake
نویسنده
چکیده
We consider two types of Besov spaces on the closed snowflake, defined by traces and with the help of the homeomorphic map from the interval [0, 3]. We compare these spaces and characterize them in terms of Daubechies wavelets.
منابع مشابه
Function spaces on the Koch curve
We consider two types of Besov spaces on the Koch curve, defined by traces and with the help of the snowflaked transform. We compare these spaces and give their characterization in terms of Daubechies wavelets.
متن کاملIsometric Embeddings of Snowflakes into Finite-dimensional Banach Spaces
We consider a general notion of snowflake of a metric space by composing the distance with a nontrivial concave function. We prove that a snowflake of a metric space X isometrically embeds into some finite-dimensional normed space if and only if X is finite. In the case of power functions we give a uniform bound on the cardinality of X depending only on the power exponent and the dimension of t...
متن کاملOn the dual of certain locally convex function spaces
In this paper, we first introduce some function spaces, with certain locally convex topologies, closely related to the space of real-valued continuous functions on $X$, where $X$ is a $C$-distinguished topological space. Then, we show that their dual spaces can be identified in a natural way with certain spaces of Radon measures.
متن کاملA new class of function spaces on domains of R^d and its relations to classical function spaces
متن کامل
The concentration function problem for $G$-spaces
In this note, we consider the concentration function problem for a continuous action of a locally compact group $G$ on a locally compact Hausdorff space $X$. We prove a necessary and sufficient condition for the concentration functions of a spread-out irreducible probability measure $mu$ on $G$ to converge to zero.
متن کامل